Черная дыра. Загадочная и далекая

Однако эта формула вступает в противоречие с (4), так как в планковских единицах A намного меньше V для известных физических систем (соотношение A/V составляет порядка 10-20 для протона и 10-41 для Земли). Так какая же из формул верна: (4), базирующаяся на ОТО и свойствах черных дыр в квазиклассическом приближении, или (5), основанная на экстраполяции обычной квантовой теории поля до планковских масштабов? В настоящее время имеются весьма сильные аргументы в пользу того, что “мертва” скорее формула (5), чем (4).

Это, в свою очередь, может означать, что подлинно фундаментальная теория материи не просто очередная модификация квантовой теории поля, сформулированной “по объему”, а некая теория, “живущая” на определенной поверхности, ограничивающей этот объем. Гипотеза получила название голографического принципа , по аналогии с оптической голограммой, которая, будучи плоской, тем не менее дает объемное изображение. Принцип сразу же вызвал большой интерес, ибо теория “на поверхности” – это нечто принципиально новое, вдобавок сулящее упрощение математического описания: ввиду понижения пространственной размерности на единицу, поверхности имеют меньшее число геометрических степеней свободы. В полной мере голографическая гипотеза пока не доказана, но уже существуют два общепризнанных подтверждения – ковариантное ограничение на энтропию вещества и AdS/CFT-соответствие.

Первое дает рецепт вычисления статистической энтропии (4) для общего случая материального тела, как определенной величины, вычисляемой на светоподобных мировых поверхностях, ортогональных поверхности тела (да простит меня неискушенный читатель за эту фразу). Общая идея состоит в следующем. Что принять за меру энтропии в искривленном пространстве-времени, то есть как ее посчитать правильно? Например, в случае распределения шара по ящикам (см. “Подробности для любознательных”) мерой энтропии фактически является число ящиков, в случае обычного газа – его объем, отнесенный к усредненному объему молекулы. Но в четырехмерном пространстве-времени объем чего бы то ни было величина не абсолютная (помните лоренцево сокращение длин?). Ну а понятие “ящика”, сами понимаете, несколько выходит за рамки элементарных понятий фундаментальной науки. В общем, необходимо определить меру энтропии через элементарные понятия дифференциальной геометрии, которые были бы ковариантными , то есть значения которых менялись бы в зависимости от положения наблюдателя четко определенным образом.

Пусть N – светоподобная гиперповерхность (обобщенный световой конус) некоторой совокупности пространственных точек S. Грубо говоря, N – это множество фотографий S, сделанных через бесконечно малые промежутки времени. Возьмем два пространственных среза N, сделанных в различные моменты времени (две “фотографии”), назовем их S1 и S2. Тогда принцип ковариантного ограничения на энтропию вещества, находящегося в S, гласит, что поток энтропии через гиперповерхность N между срезами S1 и S2 меньше модуля разности их площадей, деленного на четыре (с точностью до размерного коэффициента, равного 1 в планковской системе единиц), или равен ему. Легко видеть, что по сути это та же формула (4), только сформулированная более корректно с точки зрения геометрии.

Второе – так называемое соответствие между пространством анти-де Ситтера (adS) и Конформной теорией поля (CFT) – это реализация голографии для некоего частного случая пространств постоянной отрицательной кривизны, тесно связанная с теорией струн. Соответствие гласит, что Конформная теория поля, определенная на границе пространства-времени анти-де Ситтера (то есть на пространстве с размерностью на единицу меньше размерности самого adS), эквивалентна квантовой гравитации внутри самого анти-де Ситтера. Фактически это доказанное соответствие между высокоэнергетическими квантовыми состояниями в CFT и квантовыми возмущениями гравитационного поля в пространстве-времени постоянной отрицательной кривизны. Не забудьте, что теория струн – один из частных случаев двухмерной конформной теории поля, так что напрашиваются далеко идущие приложения. На первый взгляд, AdS/CFT-соответствие не интересно с точки зрения физики: если предположить, что глобально наша Вселенная есть четырехмерное пространство анти-де Ситтера (adS4), то она не может расширяться, в полном несогласии с астрономическими наблюдениями, восходящими еще к Хабблу. Однако есть надежда, что AdS/CFT-соответствие и само по себе все же сможет найти физические приложения. Если предположить, что наша четырехмерная Вселенная (необязательно анти-деситтеровского типа) вложена в, скажем, пятимерное пространство отрицательной кривизны (AdS5), то получаются так называемые космологические модели “(мем)бранных миров” (англ. brane-world). Тогда убиваем сразу двух зайцев: (а) пространство многомерно, как и предсказывает теория струн, (б) AdS/CFT-соответствие работает, то есть с его помощью можно что-нибудь посчитать . Последнее означает, что некоторые свойства Вселенной (экспериментально проверяемые) могут быть предсказаны посредством прямых вычислений, а пункты (а) и (б) можно будет подтвердить или опровергнуть экспериментально.

5. Черная дыра и предел делимости материи

На заре прошлого века вождь мирового пролетариата, вероятно, находясь под впечатлением открытий Резерфорда и Милликена, рождает знаменитое “электрон так же неисчерпаем, как и атом”. Этот лозунг висел в кабинетах физики почти всех школ Союза. Увы, слоган Ильича так же неверен, как и некоторые его политэкономические воззрения. Действительно, “неисчерпаемость” подразумевает наличие бесконечного количества информации в любом сколь угодно малом объеме вещества V. Однако максимум информации, которую может вместить V, согласно (4) ограничен сверху.

Каким же образом существование этого предела “информационной емкости” должно проявляться на физическом уровне? Начнем немного издалека. Что такое современные коллайдеры, то есть ускорители элементарных частиц? По сути, это очень большие микроскопы, задача которых – увеличение разрешения по длинам Dx. А как можно улучшить разрешение? Из соотношения неопределенностей Гейзенберга DxDp = const следует, что, если хочешь уменьшить Dx, нужно увеличить импульс p и, как следствие, энергию E частиц. И вот представим, что некто получил в свое распоряжение коллайдер неограниченной мощности. Сможет ли он, открывая все новые и новые частицы, бесконечно извлекать информацию?

Увы, нет: непрерывно увеличивая энергию сталкивающихся частиц, он рано или поздно достигнет стадии, когда расстояние между какими-нибудь частицами из них в области столкновения станет сравнимо с соответствующим радиусом Шварцшильда, что немедленно повлечет рождение черной дыры. Начиная с этого момента вся энергия будет ею поглощаться, и, сколько ни увеличивай мощность, новой информации уже не получишь. Сама же черная дыра при этом станет интенсивно испаряться, возвращая энергию в окружающее пространство в виде потоков субатомных частиц. Таким образом, законы черных дыр, вкупе с законами квантовой механики, неизбежно означают существование экспериментального предела дробления материи.

В этом смысле достижение “чернодырного” порога на коллайдерах будущего будет неизбежно означать конец старой доброй физики элементарных частиц – по крайней мере, в том виде, как она понимается сейчас (то есть как непрерывное пополнение музея элементарных частиц новыми экспонатами). Но вместо этого откроются новые перспективы. Ускорители будут служить нам уже как инструмент исследования квантовой гравитации и “географии” дополнительных измерений Вселенной (против существования которых на данный момент пока не выдвинуто каких-либо убедительных аргументов).

Optimized with PageSpeed Ninja

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: