Гравитон. Частица, которой нет

гравитон

Гравитация — одна из четырех фундаментальных сил Вселенной. Без нее не было бы ни звезд, ни планет, ни людей, ни котиков. Поэтому люди очень хотят узнать о гравитации всё.

Исаак Ньютон первым нашел математическое описание гравитации. А Альберт Эйнштейн, создатель общей теорией относительности, полностью изменил понимание того, как она работает. Однако это не означает, что наука полностью понимает ее природу. Все, что мы можем – это достаточно точно описать движение небесных тел. Эти знания позволяют, например, позволяют космическим зондам попадать на поверхность Марса с удивительной точностью. Мы предсказываем солнечные затмения с точностью до секунды. Но не более того.

Неуловимый гравитон

С гравитацией связана одна очень серьезная фундаментальная проблема. И эта проблема называется гравитон. Это калибровочный бозон, описываемый квантовой теории гравитации. Это звучит очень сложно. И это правда очень сложно. Но давайте попробуем разобраться в этом вопросе.

Начнем с простого. С калибровочного бозона. Так ученые называют частицы, передающие фундаментальные взаимодействия. Фотон, например, является калибровочным бозоном, передающим электромагнитное взаимодействие. А еще есть W- и Z-бозоны и глюоны.

Чтобы понять, как работают калибровочные бозоны, нужно понимать, что такое квантовые поля. «Нормальные» поля легко представить. Например, магнитные поля. Их даже можно сделать «видимыми», как все мы, наверное, делали на уроке физики. Если не делали, то это происходит так: разбросайте железные опилки рядом с магнитом. И увидите, как они выстраиваются вдоль структур, называемых «линиями магнитного поля».

В общем случае поле есть не что иное, как описание пространственного распределения физической величины. Магнитное поле говорит нам, насколько сильна магнитная сила в определенных точках пространства.

Электромагнетизм — это то, с чем мы постоянно сталкиваемся в повседневной жизни. Свет — это электромагнитная волна. Теория, с помощью которой мы описываем свет или электромагнетизм, — это квантовая теория поля. И важным словом здесь является «квант».

Великий Макс Планк в 1900 году сделал удивительное открытие. Ученый обнаружил, что энергия, содержащаяся в электромагнитной волне, не может делиться произвольными «порциями». И что существуют мельчайшие единицы энергии – кванты. И меньше энергии, чем в кванте, быть не может!

Четыре силы Вселенной

Однако электромагнетизм — лишь одна из четырех основных сил Вселенной. Потому что еще есть силы, формирующие природу внутренней части атомных ядер. Это сильные и слабые ядерные взаимодействия. Они также описываются квантовыми полями. И здесь тоже есть калибровочные бозоны, передающие эту силу. В случае сильного ядерного взаимодействия это так называемые вышеупомянутые «глюоны». В случае слабого ядерного взаимодействия — частицы, называемые «W-бозон» и «Z-бозон».

И если мы описываем гравитационную силу как квантовое поле, то здесь нам также будет необходим подходящий квант поля.

Вот здесь нас и поджидает проблема. Потому что у науки нет не только доказательств существования гравитона. У нее нет даже квантово-механического описания самой гравитации!

С тремя другими фундаментальными силами это удалось сделать за последние несколько десятилетий. Но гравитация упорно отказывается быть описанной квантовой механикой!

Нужно признать, что общая теория относительности Альберта Эйнштейна, которая уже более 100 лет чрезвычайно успешно описывает гравитацию, — странная теория. Гравитация в ней описывается не как классическая сила, а как свойство самого пространства-времени. Согласно её постулатам, масса его искривляет. И когда другие массы движутся сквозь пространство-время, их движение следует этим искривлениям. Мы это видим. И воспринимаем как действие силы, действующей между этими массами.

Описание работы гравитации таким образом было гениальной идеей Альберта Эйнштейна. Но поскольку гравитация сильно отличается от того, что мы обычно называем «силой», ее очень трудно вписать в квантово-механическую схему.

Два брата?

На сегодняшний день учёным не удалось квантовать гравитацию. Они не могут описать ее с помощью теории, работающей с квантовыми полями и полевыми квантами.

Всё, что удалось установить – гравитон должен быть частицей с нулевой массой покоя. Такой же, как у фотонов. Это следует из того, что гравитация, как и электромагнетизм, действует бесконечно далеко. Две ядерные силы имеют ограниченную дальность действия. Потому что их калибровочные бозоны представляют собой частицы, имеющие массы.

Также установлено, что сила гравитации, как и электромагнетизм, распространяется со скоростью света. Значит гравитоны, как и фотоны не могут иметь массу. Потому что в противном случае они не могли бы двигаться со скоростью света.

Так что фотон и гравитон должны быть очень похожи. Но в тоже время они должны быть разными. Потому что электромагнетизм можно экранировать. А вот гравитация работает ВСЕГДА. Не существует никакого гравитационного щита. Нельзя просто положить что-то куда-то и заблокировать гравитацию. Кроме того, не существует отрицательной гравитации, которая могла бы уравновесить положительную гравитацию.

Итак, мы немного знаем о том, как должны выглядеть гравитоны. Но если у нас нет квантовой теории гравитации, это ни к чему нас не приведет. Также не очень помогает и создание каких-либо детекторов для обнаружения этих частиц. Гравитация — чрезвычайно слабая сила. Простой пример: обыкновенный магнит на холодильнике спокойно удерживает лист бумаги от падения. А ведь вся Земля притягивает его своей огромной массой!

Поймать невидимку

Применительно к калибровочным бозонам это означает: гравитон очень слабо взаимодействует с материей. Можно построить гравитонный детектор размером с Юпитер, и поместить его рядом с чрезвычайно сильным гравитационным источником, скажем, нейтронной звездой. И даже если бы детектор был абсолютно эффективным, в лучшем случае можно было бы обнаружить один гравитон за несколько десятилетий!

В лучшем случае мы можем попытаться косвенно узнать немного больше об этих частицах. Да, мы пока не можем их обнаружить. Но мы могли бы доказать их существование, если гравитон имеет хоть какую-то массу. Тогда, например, гравитационные волны, должны были бы двигаться чуть-чуть медленнее света.

Гравитационные волны впервые были зафиксированы в 2015 году. Но до сих пор учёные не обнаружили ничего, что указывало бы на то, что они двигаются медленнее света. Также можно определить, имеет ли гравитон массу, наблюдая за движением звезд в галактиках.

Но даже в этом случае мы узнаем ненамного больше. Просто станет понятно, что значительная часть современных представлений о мире элементарных частиц нуждается в корректировке. Хотя это очевидно уже и так. Потому что иначе наука уже давно бы разработала квантовую теорию гравитации. И, вероятно, только в этом случае мы сможем по-настоящему понять, что такое гравитон.

Или что его вообще не существует.

Понравилась статья? Поделитесь ей в социальных сетях! Огромное спасибо!
Живой Космос
Оставьте комментарий!