Черная дыра. Загадочная и далекая

(Stot)начальн = Sвещество + Sоболочка ,

после:

(Stot)конечн = SЧД = A/4.

Из (3) и неотрицательности энтропии получаем знаменитое ограничение сверху на энтропию вещества:

Sвещество ? A/4. (4)

Формулы (2) и (3), несмотря на их простоту, породили загадку, оказавшую огромное влияние на развитие фундаментальной науки. Из стандартного курса статистической физики известно, что энтропия системы является не первичным понятием, а функцией от степеней свободы микроскопических составляющих системы — например, энтропия газа определяется как логарифм числа возможных микросостояний его молекул. Таким образом, если черная дыра имеет энтропию, то она должна обладать внутренней структурой! Только в последние годы наметился подлинно большой прогресс в понимании этой структуры1, а тогда идеи Бекенштейна были вообще скептически восприняты физиками. Стивен Хокинг, по его собственному признанию, решил опровергнуть Бекенштейна его же оружием — термодинамикой.

Излучение Хокинга. Коль скоро (2) и (3) наделены физическим смыслом, первый закон термодинамики диктует, что черная дыра должна иметь температуру T. Но позвольте, какая может быть у нее температура?! Ведь в таком случае черная дыра должна излучать, что противоречит ее главному свойству! Действительно, классическая черная дыра температуры, отличной от абсолютного нуля, иметь не может. Однако если предположить, что микросостояния, которые имеет черная дыра, подчиняются законам квантовой механики , что, вообще говоря, практически очевидно, то противоречие легко устранимо. Согласно квантовой механике, а точнее, ее обобщению — квантовой теории поля, может происходить спонтанное рождение частиц из вакуума. При отсутствии внешних полей пара частица-античастица, рожденная таким образом, аннигилирует обратно в вакуумное состояние. Однако если поблизости есть черная дыра, ее поле притянет ближайшую частицу. Тогда, по закону сохранения энергии-импульса, другая частица уйдет на бoльшее расстояние от черной дыры, унося с собой «приданое» — часть энергии-массы коллапсара (иногда говорят, что «черная дыра потратила часть энергии на рождение пары», что не совсем корректно, ибо выживает не вся пара, а только одна частица).

Как бы то ни было, в результате удаленный наблюдатель обнаружит поток всевозможных частиц, излучаемых черной дырой, которая будет расходовать свою массу на рождение пар, пока полностью не испарится, превратившись в облако излучения 2. Температура черной дыры обратно пропорциональна ее массе, таким образом, более массивные испаряются медленнее, ибо время их жизни пропорционально кубу массы (в четырехмерном пространстве-времени). Например, время жизни черной дыры с массой M порядка солнечной превосходит возраст Вселенной, тогда как микродыра с M = 1 тераэлектронвольт (1012 эВ, примерно 2.10-30 кг) живет около 10-27 секунд.

3. Черные дыры и сингулярности

В научно-фантастической литературе и фильмах черная дыра обычно представляется этаким космическим Гаргантюа, безжалостно пожирающим пролетающие корабли с отважными блондинками и даже целые планеты. Увы, если бы фантасты знали о современной физике чуть больше, они бы не были столь несправедливы к черным дырам. Дело в том, что коллапсары фактически защищают Вселенную от гораздо более грозных монстров…

Сингулярностью называется точка пространства, в которой его кривизна неограниченно стремится к бесконечности, — пространство-время как бы рвется в этой точке. Современная теория говорит о существовании сингулярностей как о неизбежном факте3 — с математической точки зрения, решения уравнений, описывающие сингулярности, также равноправны, как и все прочие решения, описывающие более привычные объекты Вселенной, которые мы наблюдаем.

Есть тут, однако, очень серьезная проблема. Дело в том, что для описания физических явлений необходимо не только иметь соответствующие уравнения, но нужно также задать граничные и начальные условия. Так вот, в сингулярных точках эти самые условия задать нельзя в принципе , что делает предсказательное описание последующей динамики невозможным. А теперь представим, что на раннем этапе существования Вселенной (когда она была достаточно малой и плотной) образуется множество сингулярностей. Тогда в областях, которые находятся внутри световых конусов этих сингулярностей (иными словами, причинно-зависимых от них) никакое детерминистское описание невозможно. Мы имеем абсолютный и бесструктурный хаос, без намека на какую-либо причинность. Далее, эти области хаоса расширяются со временем по мере эволюции Вселенной. В результате к настоящему времени подавляющая часть Вселенной была бы совершенно стохастичной (случайной) и ни о каких «законах природы» не могло бы быть и речи. Не говоря уже о блондинках, планетах и прочих неоднородностях вроде нас с вами.

К счастью, ситуацию спасают наши ненасытные обжоры. Математическая структура уравнений фундаментальной теории и их решений указывает на то, что в реальных ситуациях пространственные сингулярности должны появляться не сами по себе, а исключительно внутри черных дыр. Как тут не вспомнить мифологических титанов, пытавшихся воцарить Хаос на Земле, но низвергнутых Зевсом и Ко в Тартар и благополучно заключенных там навеки…

Таким образом, черная дыра отделяет сингулярность от остальной Вселенной и не позволяют ей влиять на ее причинно-следственные связи. Этот принцип запрета существования «голых» (англ. naked) сингулярностей, то есть не окруженных горизонтом событий, предложенный Р. Пенроузом в 1969 году, получил название гипотезы космической цензуры. Как это часто бывает с фундаментальными принципами, полностью он не доказан, но принципиальных нарушений пока замечено не было — Космический цензор на пенсию пока не собирается.

4. «Информационоемкость» материи и теория великого объединения

Локальная квантовая теория прекрасно зарекомендовала себя при описании всех известных элементарных взаимодействий, кроме гравитационного. Стало быть, фундаментальная квантовая теория с учетом ОТО также принадлежит к этому типу? Если принять эту гипотезу, нетрудно показать, что максимальное количество информации S, которое можно запасти в куске вещества объема V, равно V, измеренному в планковских единицах объема VP ~10-99 см3 с точностью до множителя, зависящего от конкретной теории:

Sвещество ~ V. (5)

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Комментарии закрыты.

Этот сайт использует куки. Вы можете отказаться, если хотите ПринятьПрочитать больше

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: