Нейтронные звезды

нейтронная звезда

Нейтронная звезда — космическое тело, являющийся одним из возможных результатов эволюции звёзд. Состоит, в основном, из нейтронной сердцевины. Покрыта звезда сравнительно тонкой (∼1 км) коркой вещества в виде тяжёлых атомных ядер и электронов. Массы нейтронных звёзд сравнимы с массой Солнца. Но типичный радиус нейтронной звезды составляет лишь 10—20 километров. Поэтому средняя плотность вещества такого объекта в несколько раз превышает плотность атомного ядра (которая для тяжёлых ядер составляет в среднем 2,8·1017кг/м³). Дальнейшему гравитационному сжатию нейтронной звезды препятствует давление ядерной материи, возникающее за счёт взаимодействия нейтронов.

Многие нейтронные звёзды обладают чрезвычайно высокой скоростью вращения, — до тысячи оборотов в секунду. Нейтронные звёзды возникают в результате вспышек сверхновых звёзд.

Масса нейтронной звезды

Массы большинства нейтронных звёзд составляют 1,3—1,5 массы Солнца. Это близко к значению предела Чандрасекара. Теоретически допускается существование нейтронных звёзд с массами от 0,1 до примерно 2,5 солнечных масс. Однако значение верхнего предела массы в настоящее время достоверно неизвестно. Самые массивные нейтронные звёзды из известных — Vela X-1 (имеет массу не менее 1,88±0,13 солнечных масс на уровне 1σ, что соответствует уровню значимости α≈34 %), PSR J1614-2230ruen (с оценкой массы 1,97±0,04 солнечных), и PSR J0348+0432ruen (с оценкой массы 2,01±0,04 солнечных).

Гравитация в нейтронных звёздах уравновешивается давлением вырожденного нейтронного газа. Максимальное значение массы нейтронной звезды задаётся пределом Оппенгеймера-Волкова. Численное значение которого зависит от (пока ещё плохо известного) уравнения состояния вещества в ядре звезды. Существуют теоретические предпосылки к тому, что при ещё большем увеличении плотности возможно перерождение нейтронных звезд в кварковые.

Строение нейтронной звезды

Магнитное поле на поверхности нейтронных звёзд достигает значения 10^12—10^13 Гс. Для сравнения — у Земли его значение около 1 Гс. Процессы, происходящие в магнитосферах нейтронных звёзд ответственны за радиоизлучение пульсаров. Начиная с 1990-х годов, некоторые нейтронные звёзды отождествлены как магнетары. Это звёзды, обладающие магнитными полями порядка 10^14 Гс и выше.

К 2022 году открыто свыше 2500 нейтронных звёзд. Порядка 90% из них — одиночные. Всего же в нашей Галактике могут существовать 108—109 нейтронных звёзд. То есть где-то по одной на тысячу обычных звёзд. Для нейтронных звёзд характерна высокая скорость движения (как правило, это сотни км/с). В результате аккреции вещества нейтронная звезда может быть в этом случае видна с Земли в разных спектральных диапазонах, включая оптический. На который приходится около 0,003% излучаемой энергии (соответствует 10 звёздной величине).

Нейтронные звёзды — одни из немногих классов космических объектов, которые были теоретически предсказаны до открытия наблюдателями.

В 1933 году астрономы Вальтер Бааде и Фриц Цвикки предположили, что нейтронная звезда может образоваться в результате взрыва сверхновой. Теоретические расчёты того времени показали, что излучение нейтронной звёзды слишком слабое, и ее невозможно обнаружить. Интерес к нейтронным звёздам усилился в 1960-х гг., когда начала развиваться рентгеновская астрономия.

Открытие пульсаров

Теория предсказывала, что максимум теплового излучения нейтронной звезды приходится на область мягкого рентгена. Однако неожиданно они были открыты при радионаблюдениях. В 1967 году Джоселин Белл, аспирант Э. Хьюиша, открыла объекты, излучающие регулярные импульсы радиоволн. Этот феномен был объяснён узкой направленностью радиолуча от быстро вращающегося объекта — своеобразный «космический радиомаяк». Но любая обычная звезда разрушилась бы при столь высокой скорости вращения. На роль таких маяков были пригодны только нейтронные звёзды. Пульсар PSR B1919+21 считается первой открытой нейтронной звездой.

Взаимодействие нейтронной звезды с окружающим веществом определяют два основных параметра и, как следствие, их наблюдаемые проявления: период (скорость) вращения и величина магнитного поля. Со временем звезда расходует свою вращательную энергию, и её вращение замедляется. Магнитное поле также ослабевает. По этой причине нейтронная звезда за время своей жизни может поменять свой тип. Ниже представлена номенклатура нейтронных звёзд в порядке убывания скорости вращения, согласно монографии В.М. Липунова. Поскольку теория магнитосфер пульсаров все еще в состоянии развития, существуют альтернативные теоретические модели.

Эжектор

Имеет сильные магнитные поля и малый период вращения. В простейшей модели магнитосферы, магнитное поле вращается твердотельно, то есть с той же угловой скоростью, что и тело нейтронной звезды. На определённом радиусе линейная скорость вращения поля приближается к скорости света. Этот радиус называется «радиусом светового цилиндра». За этим радиусом обычное дипольное поле существовать не может, поэтому линии напряжённости поля в этом месте обрываются.

Заряженные частицы, двигающиеся вдоль силовых линий магнитного поля, через такие обрывы могут покидать нейтронную звезду и улетать в межзвездное пространство. Нейтронная звезда данного типа «эжектирует» (от фр. éjecter — извергать, выталкивать) релятивистские заряженные частицы, которые излучают в радиодиапазоне. Эжекторы наблюдаются как радиопульсары.

Пропеллер

Скорость вращения уже недостаточна для эжекции частиц, поэтому такая звезда не может быть радиопульсаром. Однако скорость вращения всё ещё велика. И захваченная магнитным полем окружающая нейтронную звезду материя не может упасть. То есть аккреция вещества не происходит. Нейтронные звёзды данного типа практически не имеют наблюдаемых проявлений и изучены плохо.

Аккретор (рентгеновский пульсар)

Скорость вращения снижается до такого уровня, что веществу теперь ничего не препятствует падать на нейтронную звезду. Падая, вещество уже будучи в состоянии плазмы, движется по линиям магнитного поля и ударяется о твёрдую поверхность тела нейтронной звезды. Это происходит в районе ее полюсов при температурах до десятков миллионов градусов. Вещество, нагретое до столь высоких температур, ярко светится в рентгеновском диапазоне. Область, в которой происходит столкновение падающего вещества с поверхностью тела нейтронной звезды, очень мала — всего около 100 метров. Это горячее пятно из-за вращения звезды периодически пропадает из вида, поэтому наблюдаются регулярные пульсации рентген-излучения. Такие объекты и называются рентгеновскими пульсарами.

Георотатор

Скорость вращения таких нейтронных звёзд мала и не препятствует аккреции. Но размеры магнитосферы таковы, что плазма останавливается магнитным полем раньше, чем она будет захвачена гравитацией. Подобный механизм работает в магнитосфере Земли, из-за чего данный тип нейтронных звезд и получил своё название.

Магнетар

Нейтронная звезда, обладающая исключительно сильным магнитным полем (до 10^11 Тл). Теоретически существование магнетаров было предсказано в 1992 году. А первое свидетельство их реального существования получено в 1998 году при наблюдении мощной вспышки гамма – и рентгеновского излучения от источника SGR 1900+14 в созвездии Орла. Время жизни магнетаров составляет около 1 000 000 лет. У магнетаров сильнейшее магнитное поле во Вселенной.

Магнетары являются малоизученным типом нейтронных звёзд по причине того, что немногие находятся достаточно близко к Земле. Магнетары в диаметре имеют около 20—30 км, однако массы большинства из них превышают массу Солнца. Магнетар настолько плотен, что горошина его материи весила бы более 100 миллионов тонн. Большинство из известных магнетаров вращаются очень быстро, делая как минимум несколько оборотов вокруг оси в секунду. Наблюдаются в гамма-диапазоне, близком к рентгеновскому, радиоизлучение не испускают.
Жизненный цикл магнетара достаточно короток. Их сильные магнитные поля исчезают по прошествии примерно 10 000 лет, после чего их активность и излучение рентгеновских лучей прекращается. Согласно одному из предположений, в нашей галактике за всё время её существования могло сформироваться до 30 миллионов магнетаров.

Живой Космос