Черная дыра. Загадочная и далекая

6. Фабрики черных дыр на Земле?

Итак, мы выяснили, что в ускорителях элементарных частиц в принципе способна появится микроскопическая черная дыра. Вопрос: какую они должны развивать энергию, чтобы получать хотя бы одно такое событие в месяц? До недавнего времени считалось, что эта энергия чрезвычайно велика, порядка 1016 тераэлектронвольт (для сравнения: LHC сможет дать не больше 15 ТэВ). Однако если окажется, что на малых масштабах (менее 1 мм) наше пространство-время имеет число измерений больше четырех, порог необходимой энергии значительно уменьшается и может быть достигнут уже на LHC. Причина заключается в усилении гравитационного взаимодействия, когда вступят в игру предполагаемые дополнительные пространственные измерения, не наблюдаемые при нормальных условиях. Так, если обычная сила гравитационного притяжения между массивными телами в четырехмерном пространстве-времени обратно пропорциональна квадрату расстояния между ними, то при наличии n дополнительных компактных измерений она модифицируется в Fграв ~ 1/r(2 + n) при r ? rn, где rn – максимальный размер этих измерений. Тогда с уменьшением r Fграв растет гораздо быстрее, чем по закону обратных квадратов, и уже на расстояниях порядка 10(-17+32/n) сантиметров компенсирует силу электростатического отталкивания. А ведь именно она была причиной высокой пороговой энергии: чтобы преодолеть кулоновские силы и приблизить сталкивающиеся частицы на необходимое расстояние r = Rs, приходилось сообщать частицам пучка бoльшую кинетическую энергию. В случае же существования дополнительных измерений ускоренный рост Fграв экономит значительную часть необходимой энергии.

Все вышесказанное никоим образом не означает, что мини-дыры будут получены уже на мощностях LHC – это произойдет лишь при самом благоприятном варианте теории, которую “выберет” Природа. Кстати, не следует преувеличивать их опасность в случае получения  – по законам физики они быстро испарятся. Иначе Солнечная система давно прекратила бы свое существование: в течение миллиардов лет планеты бомбардируются космическими частицами с энергией на много порядков выше достигаемых на земных ускорителях.

7. Черная дыра и космологическая структура Вселенной

Теория струн и большинство динамических моделей Вселенной предсказывают существование особого типа фундаментального взаимодействия – глобального скалярного поля (ГСП). В масштабах планеты и Солнечной системы его эффекты крайне малы и труднообнаружимы, однако в космологических масштабах влияние ГСП возрастает неизмеримо, так как его удельная доля в средней плотности энергии во Вселенной может превышать 72 процента! Например, от него зависит, будет ли наша Вселенная расширяться вечно или в конце концов сожмется в точку. Глобальное скалярное поле – один из вероятнейших кандидатов на роль “темной энергии”, о которой так много пишут в последнее время.

Черная дыра появляется в этой связи весьма неожиданным образом. Можно показать, что необходимость их сосуществования с глобальным скалярным полем накладывает взаимные ограничения на свойства черных дыр. В частности, наличие черных дыр накладывает ограничение на верхний предел эффективной космологической постоянной (параметра ГСП, ответственного за расширение Вселенной), тогда как ГСП ограничивает нижний предел их масс (а значит, энтропии и обратной температуры T-1) некой положительной величиной. Иными словами, черные дыры, будучи “локальными” 5 и, по меркам Вселенной, крошечными объектами, тем не менее самим фактом своего существования влияют на ее динамику и другие глобальные характеристики опосредованно, через глобальное скалярное поле.

Эпилог

Эйнштейн однажды сказал, что человеческий разум, однажды “расширенный” гениальной идеей, уже никогда не сможет сжаться до первоначального состояния . Это прозвучит немного парадоксально, но исследование предельно сжатого состояния материи было, есть и долгое время будет одним из главных путей и стимулов расширения границ человеческого интеллекта и познания фундаментальных законов мироздания.

ПОДРОБНОСТИ ДЛЯ ЛЮБОЗНАТЕЛЬНЫХ

Понятие энтропии

Согласно одной легенде, когда Клод Шеннон (Claude Shannon), гигант мысли и отец теории информации, терзался вопросом, как ему назвать только что изобретенное понятие, он попросил совета у другого гиганта, Джона фон Неймана (John von Neumann). Ответом было: “Назовите это энтропией – тогда в дискуссиях вы получите солидное преимущество – ибо никто не знает, что такое энтропия в принципе”. Так родилось понятие “энтропии по Шеннону” (англ. Shannon entropy), ныне широко используемое в теории информации.

Ну что ж, уровни незнания могут быть разными – от полного невежества до глубокого понимания всей сложности проблемы. Попытаемся несколько улучшить наш уровень незнания энтропии.

Статистическая энтропия, введенная Людвигом Больцманом (Ludwig Boltzmann) в 1877 году, – это, грубо говоря, мера количества возможных состояний системы. Предположим, мы имеем две системы, состоящие из ящиков и одного шарика в каждой из них. Первая система “ящики плюс шарик” имеет только 1 ящик, вторая – 100 ящиков. Вопрос – в каком ящике находится шарик в каждой системе? Ясно, что в первой системе он может быть только в одном ящике. Помните формулу “Энтропия есть логарифм числа возможных состояний”? Тогда энтропия первой системы равна log1, то есть нулю, что отражает факт полной определенности (кстати, это одна из причин, почему в определении энтропии был использован логарифм). Что касается второй системы, то здесь мы имеем неопределенность: шарик может находиться в любом из 100 ящиков. В этом случае энтропия равна log100, то есть не равна нулю. Ясно, что, чем больше ящиков в системе, тем больше ее энтропия. Поэтому и говорят часто об энтропии как о мере неопределенности, ибо наши шансы “зафиксировать” шарик в конкретном ящике уменьшаются по мере увеличения их числа.

Заметьте, что в этом вопросе нас не интересуют физические свойства ни ящиков, ни шарика (цвет, форма, масса, и прочее), то есть энтропия представляет собой понятие реляционного типа*, универсальное по своей сути и иногда (но не всегда) наделенное конкретным физическим смыслом. Мы могли бы заменить шарики электронами, а ящики – вакансиями в твердом теле (или даже какими-то абстрактными категориями , как, например, в теории информации), а понятие энтропии по-прежнему было бы применимо и полезно.

Термодинамическая же энтропия, предложенная в 1865 году Рудольфом Клаузиусом (Rudolf Clausius) и, как мы знаем со школы, заданная формулой dS = dQ/T, где dQ – подвод теплоты к элементу вещества, T – темпеpатypа, пpи котоpой он находится, – это частный случай статистической энтропии, справедливый, например, для тепловых машин. Ранее считалось, что термодинамическая энтропия не может быть применима к черным дырам, но Бекенштейн и Хокинг показали, что это не так, при должном определении понятий T и S (см. гл. 2).

Optimized with PageSpeed Ninja

Сообщить об опечатке

Текст, который будет отправлен нашим редакторам: